
Elmer 160 Lesson 1

The PIC Architecture Elmer 160 Lesson 1.doc

Revised: 16 Nov 2003 - 01:44 PM Page 1 of 9
Printed: 16 Nov 2003 - 01:44 PM John J. McDonough, WB8RCR

Lesson 1
The PIC Architecture

Overview

Introduction This lesson gives an overview of the PIC microcontroller from a software
perspective. Hardware implementation and issues are covered in other lessons.

In this section Following is a list of topics in this section:

Topic See Page

Architectural Overview 2

The File Register 3

Special Function Registers 4

Program Memory 5

EEPROM 5

OK, what does this mean? 6

Assembler 7

Wrap Up 9

Lesson 1 Elmer 160

Elmer 160 Lesson 1.doc The PIC Architecture

Page 2 of 9 Revised: 16 Nov 2003 - 01:44 PM
John J. McDonough, WB8RCR Printed: 16 Nov 2003 - 01:44 PM

Architectural Overview

Introduction Let me apologize in advance for this section. You may find this particular section
especially dull. There is a bunch of background information to get to you, and here it
is. In later sections we will actually do something, and you will likely find that a lot
more fun.

This section is about a number of basic concepts. If there are some details that don’ t
quite gel for you, don’ t get overly concerned. As we begin to poke at the PIC and do
things with it, some of what we are talking about will become more clear.

The PIC is a self-contained, Harvard architecture microcontroller. It can be highly
effective at replacing relatively complex discrete logic circuits. The PIC is not a
microprocessor in the sense of a Pentium or 80386. The PIC is targeted at embedded
applications where there is a fixed program which is relatively simple.

The PIC is a RISC (Reduced Instruction Set Computer) processor. It has only 35
instructions. While this means that it may take more instructions to accomplish a
simple task than a Pentium, which has hundreds of instructions, it also means that
there are only 35 instructions to learn. This makes the PIC simple to apply.

Harvard vs. von
Neumann
Architecture

The traditional microprocessor is what is called a von Neumann architecture. The significant
characteristic is that there is a single memory. Programs and data are stored in the same
memory, which makes it possible for a program to load another program into memory. This is a
key characteristic of what we generally think of as a computer. In most practical computers,
some portion of the address space is implemented in ROM so that the computer has some sense
when it is first powered up, but from the point of view of a program, it’s all the same.

In contrast, a Harvard architecture machine has multiple memories. In the case of the PIC there
are three; the program memory, the file register, and the EEPROM. The EEPROM is almost
like an I/O device, although it is implemented on-chip. We won’t talk about the EEPROM
much until later.

One of the issues with von Neumann machines is that the instructions and data generally need to
be different sizes. A lot of data is character data, which is typically 8 bits long. To be effective, a
processor needs to be able to fetch a character from memory, so the memory wants to be
organized in 8 bit pieces. However, if the instructions were only 8 bits, the processor would be
awfully limited. The designer would be faced with, for example, allocating 2 bits to the
instruction and 6 bits to the address of the operand. This would allow a machine with 4
instructions which could address 64 bytes of memory – not a pleasant prospect. The way
around it is to make the instructions multiple bytes. This slows things down a lot, and adds a lot
of complexity to the chip, but it’s the price of the flexibility the von Neumann architecture
affords.

Harvard machines don’t have that limitation. Since the program is stored in its own memory,
the program memory doesn’t have to be friendly to storing data. There is no reason to make
multiple memories the same width, and in most Harvard machines they aren’t. In the case of
the PIC, there are three series of PICs with 12, 14, and 16 bit wide program memories. We will
largely concentrate on the 14 bit parts.

 Continued on next page

Elmer 160 Lesson 1

The PIC Architecture Elmer 160 Lesson 1.doc

Revised: 16 Nov 2003 - 01:44 PM Page 3 of 9
Printed: 16 Nov 2003 - 01:44 PM John J. McDonough, WB8RCR

Architectural Overview, Continued

Major
Addressable
Parts of the PIC

The PIC, as we mentioned, includes a program memory. In the parts we will talk
about, this is a 14 bit wide memory. In the 16F84A, which we will use for our
experiments, there are 1024 program memory locations. The program memory is
either CMOS PROM or FLASH. The ‘F’ parts include FLASH memory for program
storage.

The PIC also includes a “ file register” , which is where data is stored. The file
register is volatile, that is, its contents are random on power up. The file register is 8
bits wide. In the 16F84A, there are 68 memory locations in the file register.

Some parts also include EEPROM. This is a non-volatile memory where a program
can keep parameter data. In the 16F84A, this memory is 64 bytes long.

Each of the PIC parts has a complement of other registers which control various
devices. These may include simple I/O pins, counters, timers and A/D converters.
The number and type of these devices varies with the part. In the case of the 16F84A
there are 13 bidirectional I/O pins, one of which can be used as a counter or timer.

The File Register

Introduction The file register is where temporary data is stored. Each file register location is 8 bits
wide. The file register is volatile, which means that its contents are random when
power is applied.

Addressing Every memory cell, whether file register, program memory, or EEPROM, has an
address. Typically, these addresses are expressed in hexadecimal. Hexadecimal
numbers have digits that range from 0 through F (A comes after 9), so there are 16
possible values for each digit. The addresses of the file register run from H’0c’ to
H’4f’ . (In the assembler, hexadecimal numbers are represented as strings with the
letter H in front of them). Notice that we could use decimal numbers, or even binary
or octal numbers, but traditionally the memory addresses in the PIC are referenced as
hexadecimal numbers.

Locations H’00’ through H’0b’ can be used to address the special function registers.
Some instructions use these registers specifically, but any instruction which affects
the file register memory can also be used on the special function registers by
referencing an address less than H’0c’ .

Typically, we provide a name for file register locations to make our program easier to
read. We cannot assign initial values to locations in the file register since their
contents are indeterminate at power up.

Lesson 1 Elmer 160

Elmer 160 Lesson 1.doc The PIC Architecture

Page 4 of 9 Revised: 16 Nov 2003 - 01:44 PM
John J. McDonough, WB8RCR Printed: 16 Nov 2003 - 01:44 PM

Special Function Registers

Introduction Much of the work of the PIC gets accomplished in a few special purpose registers.
These registers can be addressed as the first few locations in the file register address
space, but they each have a special capability that most of the file register locations
don’ t share.

The Working
Register

The most commonly used register is the working register, or W register. Although
many functions can be performed on any file register location, operations that take
two operands almost always involve the W register. Unlike the other special purpose
registers, the W register is not mapped into the file register space.

The Status
Register

Very often we would like to be able to test some consequence of an operation. For
example, following an addition, we might like to know whether a carry occurred. If
we decremented the contents of a memory cell, it may be useful to know whether the
decrement caused the contents to reach zero. Results of these kinds of operations are
recorded in the status register.

We will talk about the status register in some detail later on.

PORTA and
PORTB

These 2 locations look like ordinary file register locations, but they are connected to
the outside world. Each bit in PORTA and PORTB is connected to a pin on the chip.
Depending on whether we have set the pin to be an input or an output, the contents of
the location will either set the pin high or low, or reflect the voltage on the pin.

Depending on the particular PIC model, all of the bits may or may not be
implemented, and they may be shared with other functions. In the case of the 16F84,
all of the PORTB pins are implemented, but only 5 of the PORTA pins are
implemented, and one of those is shared with the counter/timer.

TRISA and
TRISB

These registers determine whether the corresponding PORTA and PORTB pins will
be inputs or outputs. For example, if I set bit one of TRISB to a 0, then bit one of
PORTB will be an output. If I now store a 1 into bit one of PORTB, the
corresponding pin on the chip (pin 7) will go high. Similarly, if I set bit two of
TRISB to be a 1, then bit two of PORTB will follow the state of pin 8 on the chip.

TMR0 TMR0 is a special thing. We can put it to one of two uses. In one case, it’ s a timer.
When we set it up to be a timer it keeps counting as our program executes. We can
even set it up to tap us on the shoulder after a specific amount of time has passed.

The other use is as a counter. We can set TMR0 up to count how many cycles pin 3
has been through. Better yet, it has a built in prescaler that allows us to count
frequency up to 60 MHz.

Elmer 160 Lesson 1

The PIC Architecture Elmer 160 Lesson 1.doc

Revised: 16 Nov 2003 - 01:44 PM Page 5 of 9
Printed: 16 Nov 2003 - 01:44 PM John J. McDonough, WB8RCR

Program Memory

Introduction The program memory is, well, where the program is stored. There really isn’ t a lot to
say about it. In the 16F84, the program memory is 14 bits wide by 1024 locations
long. The program memory is nonvolatile memory, which means we can program it
and it will retain its value even when power is removed.

There are two series of PIC parts, those with an F in the part number and those with a
C. The F parts, like the 16F84, have FLASH program memory. The C parts have
CMOS ROM. The C parts are less expensive, but they can be programmed only
once. The F parts can be programmed thousands of times.

Programming the
Program memory

Unlike your PC, the PIC itself cannot change its program memory. This requires
special circuitry. In the case of the 16F84, a supply of over 12 volts is required to
enable programming, in addition to the normal 5 volt logic supply. Some other PIC
parts can be programmed with 5 volts only, but currently, all of the PICs can be
programmed with 12 volt programmers.

However, only a few pins are required to program a PIC. Because of this, it is
practical to integrate some of the program circuitry into the application circuit. This
is called “ in-circuit” programming. There may be some cases where it isn’ t realistic
to provide the isolation needed to program in-circuit, but in most cases it only adds a
handful of parts, and it is a great convenience when you are experimenting.

EEPROM

Introduction The final type of memory in the PIC is Electrically Erasable PROM. This is data
memory that the PIC itself can alter, and which retains its value even when the power
is removed.

EEPROM takes multiple steps to access, so we won’ t deal with it until later in the
course. It is useful, though, to remember things like code speed or the last frequency
set.

Lesson 1 Elmer 160

Elmer 160 Lesson 1.doc The PIC Architecture

Page 6 of 9 Revised: 16 Nov 2003 - 01:44 PM
John J. McDonough, WB8RCR Printed: 16 Nov 2003 - 01:44 PM

OK, what does this mean?

Introduction So far, we’ve talked about a lot of dull stuff that may not mean very much. Let’s take
a minute to pull some of this together.

Power Up When power is first applied to a computer, any computer, there is a lot of unknown
stuff. In the case of the PIC, the contents of the data memory and registers are
random. Fortunately, the program memory remembers what we put in it.

One thing that is constant among all computers, though, on power up, the state of the
program counter is known. In the case of the PIC, the program counter contains a
zero on power up.

There are lots of things that have to happen on power up with any computer.
Fortunately, on the PIC, most of these are handled very smoothly and we can ignore
them for most purposes.

Clock Ticks The PIC has a clock, whose frequency can be set with a crystal, a resonator, or an RC
circuit. Some PICs even have a clock on board, so you don’ t need to add any
frequency controlling circuitry.

As the clock relentlessly ticks along, the PIC uses it to do its thing. On the PIC,
every instruction takes 4 cycles of the clock. That means that with a 20 MHz crystal,
the PIC is going to execute 5 million instructions a second.

Five million times a second the PIC will:

• Examine the program counter

• Fetch the contents of program memory pointed to by the program counter

• Interpret the instruction

• Do what it says

• Increment the program counter

That’s basically all any computer does. It just relentlessly picks one instruction after
another to execute. Instructions may tell it to load the working register with
something, do some math, or store the result somewhere. Those I/O pins allow that
“somewhere” to affect the outside world, that is, the circuit we want it to control.

Elmer 160 Lesson 1

The PIC Architecture Elmer 160 Lesson 1.doc

Revised: 16 Nov 2003 - 01:44 PM Page 7 of 9
Printed: 16 Nov 2003 - 01:44 PM John J. McDonough, WB8RCR

Assembler

Introduction The PIC, or any computer for that matter, simply stores combinations of bits. It gets
tough looking at long strings of ones and zeroes, so we need some sort of help. An
assembler is a program that takes representations of these numbers that are more
readable to a human, and translates them into a form that the computer can
understand.

You may also have heard of a compiler. The main difference between an assembler
and a compiler is that everything you do in the assembler translates one to one into
something in the computer. One thing you do in a compiler may translate into
hundreds of things in the computer.

The advantage of a compiler is that, if you are doing something the compiler knows
how to do, it is a lot simpler than an assembler.

The advantage of an assembler is that you control precisely what the computer will
do. When we are using the computer for an embedded controller, we are often very
concerned about timing, and this is a huge advantage.

Number
Representation

As we said, to the computer, any computer, the world is a series of ones and zeroes.
To us humans, though, it’ s a real pain looking at these strings. In the assembler, we
can, if we choose, represent a ten as B’00001010’ , but that’s kind of tough to look at.
In the assembler, we can represent a ten as a decimal number by putting D in front of
it. So the value D’10’ means exactly the same thing as B’00001010’ .

More often, we use hexadecimal representation for numbers, because decimal
numbers don’ t map nicely into the bits. Hexadecimal numbers are like decimal
numbers, except there are 16 values for each digit instead of 10. They run from 0 to
F. Thus, 6 decimal would be represented as H’06’ in hexadecimal. But 10 decimal
would be represented as H’0a’ in hex.

There is quite a good discussion of number representations on the web at:

http://vwop.port5.com/beginner/bhextut.html

if this is a little unclear.

 Continued on next page

Lesson 1 Elmer 160

Elmer 160 Lesson 1.doc The PIC Architecture

Page 8 of 9 Revised: 16 Nov 2003 - 01:44 PM
John J. McDonough, WB8RCR Printed: 16 Nov 2003 - 01:44 PM

Assembler, Continued

Machine
Instructions

Within the PIC, or any computer for that matter, any number that is pointed to by the
program counter is interpreted as an instruction. Generally, these instructions include
an operator and an operand. Also, in general, different operators use different
numbers of bits, thus leaving a different number of bits for the operand.

We could manually translate the operation we want into a number and store it in the
machine’s program memory, but this is a big pain. The assembler deals with all this
stuff for us.

Let’s assume that we want to place the number 4 into the working register. We could
refer to the programming card and recognize that we need to put:

11000000000100

Into the program memory to cause this to happen. It’ s a lot easier, though, to say:

MOVLW H’ 04’

The MOVLW tells the assembler that we want to move a literal constant into the W
register. The H’ 04’ tells it that the literal constant we want to move is a 4. The
assembler figures out that the left 6 bits being 110000 tells the chip to load the right
8 bits into the W register.

Symbols OK, so the assembler helps us with the instructions, and it allows us to represent
numbers in a variety of ways. Perhaps the most important feature, though, is that it
allows us to associate symbols with values.

Imagine, for example, that we were building a keyer. We decide to store the current
code speed in location H’3b’ in the file register. Now, if we wanted to load the
current code speed into the working register, we could tell the assembler:

MOVF H’ 3b’ , 0

The zero tells the assembler that the target of the move is the W register. However,
we could define the symbol CodeSpd to mean 03bh. Now we can write:

MOVF CodeSpd, W

We not only don’ t need to be constantly remembering where we put things, but later
on, when we come back to look at this program, it will make a lot more sense.

Elmer 160 Lesson 1

The PIC Architecture Elmer 160 Lesson 1.doc

Revised: 16 Nov 2003 - 01:44 PM Page 9 of 9
Printed: 16 Nov 2003 - 01:44 PM John J. McDonough, WB8RCR

Wrap Up

Summary In this lesson we have gotten exposed to some of the basic concepts of
microcontrollers in general, and the Microchip PIC in particular. At this point, these
concepts are pretty theoretical, but they will become clearer as we begin to use them
in our programs.

For some of you, this has been pretty old news. For others, some of it may be
confusing, and even a bit strange. There is no need to feel like you need to memorize
everything in this lesson. It is sufficient that you have seen it, so that it can gel as we
practice.

Coming Up In the next lesson we will download and install Microchip’s Integrated Development
Environment or IDE. This program will become our primary tool, and will be used
heavily in the following lessons.

